
Seven (+-2) Sins of Concurrency

Chen Shapira

In which I will show classical

concurrency problems and some

techniques of detecting and

avoiding them

I have a B.Sc. in CS and Statistics,

OCP, 10 years of production IT

experience and I’m an Oracle

Ace. So I know what I’m talking

about.

But you don’t have to trust me – I

have scripts that prove everything I

say.

Since 1967

computers

can walk and

chew gum at

the same

time

Programs need to learn to share

Example: Shared Bank Account

create or replace procedure update_account(p_id

number,p_amount number) as

n number;

begin

SELECT amount into n FROM bank_account WHERE

id=p_id;

UPDATE bank_account SET amount = n+p_amount

WHERE id=p_id;

end;

SQL> exec deposit(1,500)

SQL> commit;

SQL> exec withdraw(1,-500)

SQL> commit;

SQL> select amount from bank_account;

AMOUNT

-500

Race Condition

Sin #1

Can your code share?

Are you 100% sure?

Does this look familiar?

spool XXX_drop_db_links.sql

select 'drop database link '||OBJECT_NAME||';'

from obj

where OBJECT_TYPE='DATABASE LINK';

spool off

@XXX_drop_db_links.sql

Ostrich Algorithm

Sin #2

Few words about critical sections

and mutual exclusion

Laws of Good Concurrency

• No two processes will be in their critical

section at same time

• No assumptions about number or speed of

CPUs

• No process outside the critical section may

block other processes

• No process will wait forever to enter critical

section

Mutual Exclusion in Oracle

Locks and latches and mutexes,

oh my!

User Defined Locks

dbms_lock.allocate_unique(

lockname => 'Synchronize',

lockhandle => m_handle

);

n1 := dbms_lock.request(

lockhandle => m_handle,

lockmode => dbms_lock.x_mode,

timeout => dbms_lock.maxwait,
release_on_commit => true

);

dbms_lock.allocate_unique('Synchronize',m_handle);

dbms_lock.request(m_handle,dbms_lock.x_mode,

dbms_lock.maxwait,false);

spool XXX_drop_db_links.sql

select 'drop database link '||OBJECT_NAME||';'

from obj where OBJECT_TYPE='DATABASE LINK';

spool off

@XXX_drop_db_links.sql

dbms_lock.release(m_handle);

Another Race

select max(id) into max_id from my_table;

insert into my_table values (max_id+1,some_data);

commit;

Protecting the critical section - I

select max(id) into max_id from my_table for update;

insert into my_table values (max_id+1,some_data);

commit;

ERROR at line 1:

ORA-01786: FOR UPDATE of this query expression is

not allowed

Protecting the critical section - II

select id into max_id from my_table where id=(select

max(id) from my_table) for update;

insert into my_table values (max_id+1,some_data);

commit;

Protecting the critical section - III

select max_id into p_max_id from extra_table for

update;

insert into my_table values (max_id+1,some_data);

update extra_table set max_id=max_id+1;

commit;

Solving the race condition led to

serialization

Sin #3

The right way to do it:

create sequence my_table_seq start with 1

increment by 1 cache 20;

insert into my_table

(my_table_seq.nextval,some_data);

commit;

Quick Review

"Insanity: Doing the same thing over

and over again and expecting

different results."

Albert Einstein.

Classical Concurrency Problems

Dining Philosophers

-- number of philosophers

select count(*) into N from sticks;

think();

update sticks set owner=philosopher_id where

s_id=p_id; -- take right fork

update sticks set owner=philosopher_id where

s_id=mod(p_id+1,N); -- take left fork

eat(); -- nom nom nom

commit; -- put down forks

ORA-00060: Deadlock detected

Sin #4

think();

update sticks set owner=in_p_id where s_id=in_p_id;

select s_id into r_s from sticks where

s_id=mod(in_p_id+1,N) for update nowait;

update sticks set owner=in_p_id where

s_id=mod(in_p_id+1,N);

eat();

commit;

exception

when resource_busy then

rollback;

Starvation

Sin #5

think();

update sticks set owner=in_p_id where

s_id=least(in_p_id,mod(in_p_id+1,N));

update sticks set owner=in_p_id where

s_id=greatest(in_p_id,mod(in_p_id+1,N));

eat();

commit;

Partial Hierarchy Solution

0
4

3 2

1

Or just index your foreign keys!

Quick Review

Barbershop Queue

Generating customers

update customers set

needs_cut=1,entered_shop=systimestamp

where id in (

select id from

(select id from customers

where needs_cut=0

order by dbms_random.random)

where

rownum<=(dbms_random.value*(p_avg_customers_pe

r_sec*2+1)));

commit;

dbms_lock.sleep(1);

Each barber does:

cursor c is select * from customers where

needs_cut=1 order by entered_shop for update skip

locked;

…

fetch c into l_rec;

exit when c%NOTFOUND;

cut_hair(dbms_random.value*p_avg_cut_time*2);

finish_work(l_rec.id);

3 Barbers, Haircut in 0.3 seconds

Sin #6

About 3 concurrent customers

Sin #7

Quick Review

Oracle Concurrency Problems

Because consistency has a price

Non-transactional changes

Sin #8

00:01

Session 1

started update

where X=?

row 250,000

00:00 Session 2

updates

column X

00:05 commit

row 1

00:05

Session 1

sees

newer

data in

column X

00:05.1

Session I

starts

again

Forgetting the extra IO

Sin #9

