Seven (+-2) Sins of Concurrency

In which | will show classical
concurrency problems and some
techniques of detecting and
avoiding them

| have a B.Sc. in CS and Statistics,
OCP, 10 years of production IT
experience and I’'m an Oracle
Ace. So | know what I’'m talking
about.

Since 1967
computers
- can walk and
' chew gum at
- the same
time

Programs need to learn to share

Example: Shared Bank Account

create or replace procedure update_account (p_id
number, p_amount number) as

n number;

begin
SELECT amount into n FROM bank account WHERE
id=p_id;
UPDATE bank_account SET amount = n+p_amount
WHERE id=p_id;

end;

SQL> exec deposit (1, 500)

SQL> commit;

SQL> exec withdraw(1l,-500)

SQL> commit;

SQL> select amount from bank account;

AMOUNT

Sin #1

Race Condition

Can your code share?

Are you 100% sure?

Does this look familiar?

spool XXX drop_db_ links.sql

select 'drop database link '| |OBJECT NAME||';"
from obj

where OBJECT_TYPE='DATABASE LINK',

spool off

@XXX drop_db links.sql

Sin #2

Ostrich Algorithm

Few words about critical sections
and mutual exclusion

Laws of Good Concurrency

No two processes will be in their critical
section at same time

No assumptions about number or speed of
CPUs

No process outside the critical section may
block other processes

No process will wait forever to enter critical
section

Mutual Exclusion in Oracle

Locks and latches and mutexes,
oh my!

User Defined Locks

dbms_lock.allocate_unique (
lockname => 'Synchronize',

lockhandle => m handle
) ;

nl := dbms_lock.request (
lockhandle => m_handle,
lockmode => dbms_lock.x mode,
timeout => dbms_lock.maxwait,

release_on _commit => true

) ;

dbms_lock.allocate_unique ('Synchronize',m_handle);

dbms_lock.request (m_handle,dbms_lock.x mode,
dbms_ lock.maxwait, false);

spool XXX drop_db_1links.sql

select 'drop database link '||OBJECT NAME||';'
from obj where OBJECT_TYPE='DATABASE LINK';

spool off

@XXX_ drop_db_links.sql

dbms_lock.release (m_handle);

Another Race

select max(id) into max id from my_table;
insert into my_table values (max id+1, some_data);

commit;

Protecting the critical section - |

select max(id) into max id from my_table for update;
insert into my table values (max_ id+1, some_data);
commit;

ERROR at line 1:

ORA-01786: FOR UPDATE of this query expressic
not allowed

Protecting the critical section - Il

select id into max_id from my table where id=(select
max (id) from my_ table) for update;

insert into my table values (max_ id+1, some_data);

commit;

Protecting the critical section - Il|

select max id into p_max_id from extra_table for
update;

insert into my table values (max_ id+1, some_data);
update extra table set max id=max_ id+1;

commit;

Sin #3

Solving the race condition led to
serialization

The right way to do it:

create sequence my_ table_seq start with 1
increment by 1 cache 20;

insert into my table
(my_table_seq.nextval, some_data);

commit;

Quick Review

"Insanity: Doing the same thing over
and over again and expecting
different results.”

Classical Concurrency Problems

Dining Philosophers

select count (*) into N from sticks;
think () ;

update sticks set owner=philosopher id where
s_id=p_id;

update sticks set owner=philosopher id where
s_id=mod (p_id+1,N);

eat () ;
commit;

ORA-00060: Deadlock detected

Sin #4

think () ;

update sticks set owner=in_p_ id where s_id=in_p_ id;

select s i1id into r s from sticks where
S_id=mod(in_p_id+1l,N) for update nowait;

update sticks set owner=in_p_id where
s_id=mod(in_p_id+1l,N);

eat () ;
commit;

exception
when resource_busy then
rollback;

Starvation

WEats

mEat?

Sin #5

think () ;

update sticks set owner=in_p_ id where
s_id=least (in_p_id, mod(in_p_ id+1l,N));

update sticks set owner=in_p_ id where
s_id=greatest (in_p_id, mod(in_p_id+1l,N));

eat () ;

commit;

Partial Hierarchy Solution

Or just index your foreign keys!

Quick Review

Barbershop Queue

Generating customers

update customers set
needs_cut=1, entered_shop=systimestamp

where id in (
select id from
(select id from customers
where needs_cut=0
order by dbms_random.random)

where
rownum<= (dbms_random.value* (p_avg customers_pe
r sec*2+1)));

commit;
dbms_lock.sleep(1l);

Each barber does:

cursor c is select * from customers where
needs_cut=1 order by entered_shop for update skip
locked;

fetch ¢ into 1_rec;
exit when cSNOTFOUND;
cut_hair (dbms_random.value*p_avg_cut_time*2);

finish work(l_rec.id);

3 Barbers, Haircut in 0.3 seconds

== AVG WAIT =—l=MAX WAIT

Sin #6

About 3 concurrent customers

Sin #7

Quick Review

Oracle Concurrency Problems

Non-transactional changes

Sin #8

00:01 | 00:00 Session 2
Session 1 updates
started update column X
where X=? 00:05 commit

row 1 A row 250,000

00:05.1 00:05
Session | Session 1
starts ‘ sees
again newer

data in
column X

Forgetting the extra 10

Sin #9

